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The relation between atomic structure and elastic properties of grain boundaries is
investigated theoretically from both atomistic and continuum points of view. A
heterogeneous continuum model of the boundary is introduced where distinct phases
are associated with individual atoms and possess their atomic level elastic moduli
determined from the discrete model. The effective elastic moduli for sub-blocks from
an infinite bicrystal are then calculated for a relatively small number of atom layers
above and below the grain boundary. These effective moduli can be determined
exactly for the discrete atomistic model, while estimates from upper and lower
bounds are evaluated in the framework of the continuum model. The complete
fourth-order elastic modulus tensor is calculated for both the local and the effective
properties. Comparison between the discrete atomistic results and those for the
continuum model establishes the validity of this model and leads to criteria to assess
the stability of a given grain boundary structure. For stable structures the
continuum estimates of the effective moduli agree well with the exact effective
moduli for the discrete model. Metastable and unstable structures are associated
with a significant fraction of atoms (phases) for which the atomic-level moduli lose
positive definiteness or even strong ellipticity. In those cases, the agreement between
the effective moduli of the discrete and continuum systems breaks down.
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1. Introduction

Grain boundaries and interfaces between dissimilar materials are domains of distinct
atomic structure and, in the case of alloys, also composition. Consequently, the
physical and chemical properties of interfacial regions are often very different from
those of the bulk. Many of the physical properties of polyecrystalline and/or
composite materials are controlled by interfacial phenomena. For this reason studies
of the atomic structure of grain boundaries and other interfaces have been in the
forefront of materials research for a long time (see, for example, proceedings of recent
conferences edited by Ishida (1986), Raj & Sass (1987), Yoo et al. (1988), Aucouturier
(1990) and Riihle et al. (1990)). Theoretical analyses of the atomic structures of grain
boundaries are now well developed but studies of more general interfaces are still
rare. The main reason is the lack of physically justified descriptions of atomic
interactions in the latter case (sce, for example, Vitek & Srolovitz 1989 ; Tersoff ef al.
1989; Riihle et al. 1990).

Until recently, the main aim of the majority of the atomistic studies of grain
boundaries was to investigate the dominant structural features and their relation to
geometrical, crystallographic, characteristics of grain boundaries (see, for example,
reviews by Sutton (1984), Vitek (1984), Bristowe (1986), Balluffi (1986), Balluffi et al.
(1987)). Examples are studies of the principal relaxation modes at boundaries, the
relation between structures of various boundaries throughout a misorientation
range, and the uniqueness and/or multiplicities of boundary structures. Under-
standing of the structural characteristics of grain boundaries is important in its own
right, but the ultimate goal of atomistic studies is to uncover links between the
atomic structure and properties of grain boundaries.

In this paper we explore the elastic properties of the grain boundary region.
Several recent calculations, indeed, suggest that the elastic moduli in the boundary
domain may differ significantly from those of the bulk. Wolf and co-workers (Wolf
et al. 1989; Wolf & Lutsko 1989; Wolf & Kluge 1990), who examined superlattices
of (001) twist boundaries, as well as Adams et al. (1989), who studied the 2 = 5 (001)
twist boundary in a thin film of copper, find an increase of the Young’s modulus
perpendicular to the boundary plane and a substantial decrease of the shear modulus
in the boundary plane in the atomic layers adjacent to the boundary. The main aim
of this paper is to establish a rigorous characterization of the spatially varying elastic
modulus tensor in the interfacial region consistent with the moduli that enter in local
linear elasticity theory. Towards this end we develop a continuum analogue of grain
boundaries in which the local variation of the elastic properties is fully accounted for
in terms of distinct phases, and then analyse the overall or effective elastic properties
of bicrystals within this heterogeneous continuum framework. As will be seen, this
continuum analogue is, in turn, extremely useful for analysing the discrete atomistic
results, for example, in distinguishing among locally stable, metastable and unstable
structures for the same bicrystal.

For an ensemble of atoms in equilibrium for which the energy can be written as a
unique function of atomic positions, the effective first-order and second-order elastic
constants can be evaluated using the method of homogeneous deformations (Born &
Huang 1954). This is described in more detail in §4 and in Appendix B. In the present
case the ensemble is the block of atoms containing a planar interface in the middle
of the block. The first-order elastic constants are, of course, identified with the
internal stresses and the second-order elastic constants have the usual meaning of

Phil. Trans. R. Soc. Lond. A (1992)
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moduli. In general, the (second order) elastic moduli consist of two parts: the
homogeneous part and the relaxation part. The latter is related to the fact that in
non-centrosymmetric systems of particles the response of individual particles to a
macroscopically homogeneous applied strain is inhomogeneous (Born & Huang 1954 ;
Martin 19754, b). Given the structure of a discrete non-centrosymmetric system the
overall or effective moduli, i.e. the homogeneous plus the relaxation parts, can be
determined exactly. An analogous problem arises in a heterogeneous continuum,
composed of phases with different elastic properties, subject to a uniform applied
loading, although in this case obtaining exact solutions of the partial differential
equations for arbitrary phase geometries (including polyhedral) becomes practically
impossible. This is discussed in more detail in §3.

In discrete structures, the total energy of which can be written as a sum of energies
associated with individual atoms, an important feature of the overall first-order
elastic constants, i.e. internal stresses (or residual stresses if self equilibriated), and
second-order elastic constants, i.e. moduli, is that they can be written as sums over
all the atoms of the ensemble. Hence, we can identify, at least formally, both the
stresses and the elastic moduli associated with individual atoms, i.e. at the position
of individual atoms; these will be called atomic level stresses and elastic moduli. A
similar approach has been adopted in studies of the structure and properties of
glasses and liquids where atomic level stresses were used to analyse both the density
and topological structural fluctuations (Srolovitz et al. 1981; Vitek & Egami 1987;
Chen et al. 1988). The question as to whether this algebraic definition of local elastic
properties is reasonable is partly answered through comparisons with the
heterogeneous continuum models.

A continuum model of grain boundaries is conceived as a heterogeneous medium
where different phases are identified with individual atoms. Each phase of the
continuum is taken to occupy the interior of the Voronoi polyhedron of the
corresponding atom and the elastic moduli associated with this atom are defined as
the elastic moduli of this phase. Typically, in the region of the interface the elastic
moduli are generally anisotropic, that is there are 21 distinct components for each
atom. As explained in §3b, in the framework of local elasticity theory this model is
physically meaningful if the elastic moduli of each phase are positive definite or, at
least, meet the weaker condition of strong ellipticity (see, for example, Knops &
Payne 1971).

Theoretical elasticity helps to guide the interpretation of the atomic level elastic
moduli. If for a particular atom these moduli are positive definite, then upon
deforming the entire block uniformly the energy change associated with that atom
will be positive. Otherwise it could be negative, which at the continuum level, at
least, is thought to be unusual. This is expanded upon below. If the moduli are at
least strongly elliptic, then elastic waves in a solid possessing these moduli will
propagate with real wave speeds.

By using the results of the atomistic studies it is shown here that positive
definiteness is satisfied except for a very small number of atoms in the boundary.
Whether or not the moduli of these atoms are strongly elliptic cannot always be
readily determined, as discussed in §3b, although for some atoms it is found that the
moduli certainly are not. When the elastic moduli of each phase (atom) are positive
definite the classical uniform strain Voigt upper bound and the uniform stress Reuss
lower bound on the effective or overall elastic moduli can be utilized (Willis 1981).
Furthermore, if the moduli associated with individual atoms are at least strongly

Phil. Trans. R. Soc. Lond. A (1992)
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558 1. Alber and others

elliptic then the Voigt upper bound still applies and a new lower bound, based on an
extension of the recently developed translation method (Francfort & Murat 1986 ;
Milton 1990), can be applied. Since for discrete structures the effective moduli can be
evaluated exactly, in §5 we carry out a comparison between the bounds and the exact
effective moduli for the boundaries studied. In most cases these bounds are really
only estimates that behave like bounds since one or more of the phases (atoms) lose
strong ellipticity.

This comparison between the discrete and continuum models provides an
assessment of the validity of the continuum model in its ability to capture the actual
behaviour of the interfacial region even when the thickness of this region is of the
order of a few lattice parameters. At the same time, it also aids in evaluating the
relative stability with respect to small perturbations, of different atomic structures
of a particular crystallographically defined grain boundary, i.e. of different multiple
structures (Wang et al. 1984). Three distinct cases have been found here. First are the
structures for which the exact effective moduli lie between the continuum bounds
(estimates). Such structures are locally stable in the sense that these structures
persist after small perturbations. The second are boundaries with some effective
moduli that lie below the lower bound. These structures are also not unstable but
usually correspond to a higher total energy configuration than the first type; these
will be termed ‘metastable’. Finally, when some of the exact effective moduli lie
above the upper bound the structure is not stable which indicates an inadequacy in
relaxation even though the usual criteria for the termination of the relaxation
process are satisfied (see §2). Nearly all the structures we have calculated are, in fact,
stable. In the stable cases the continuum development presents an unambiguous
definition of the interfacial elastic moduli that can be naturally adopted to describe
bimaterial interfaces as well by formulating physically meaningful traction—
displacement jump relations (see Bassani & Qu 1990). In this way continuum
analyses of processes such as intergranular cracking and localized plastic flow near
grain boundaries and of the effective response of heterogeneous solids can incorporate
realistic descriptions of interfaces.

2. Atomistic models of grain boundaries

All the atomistic studies presented here have been carried out for grain boundaries
in pure metals and the method of calculation was principally the same as in a number
of previous studies (see, for example, Vitek et al. 1979; Sutton & Vitek 1983). First
a block consisting of the atomic coordinates of an unrelaxed face centred cubic (Fcc)
bicrystal containing the chosen boundary is constructed in the computer using the
geometrical rules of the coincidence site lattice (csr). The periodicity imposed by the
oSL in the boundary plane is then maintained throughout the relaxation process. A
relaxed structure is found using a molecular statics method in which the total
internal energy is minimized with respect to both the local atomic displacements and
relative rigid body translations of the adjoining grains. This procedure allows for
expansion and/or contraction perpendicular to the boundary plane but not parallel
to the boundary. Thus in the relaxed configuration the average stress in the direction
perpendicular to the boundary is zero but an average interfacial stress, corresponding
to the tangential stress components in the boundary plane, remains (Ackland &
Finnis 1986). This correctly reflects the constraints imposed upon the grain
boundaries in both polycrystalline materials and large bicrystals.

Phil. Trans. R. Soc. Lond. A (1992)
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The relaxation was regarded as complete when the force acting on any atom of the
relaxed block did not exceed 1073 eV A~ .7 This is a somewhat arbitrary criterion but
it was found in a number of previous calculations that a further decrease of the force
did not lead to any significant change in the boundary structure and energy.
However, it is shown here (§5) that this criterion is not entirely adequate and
unstable structures may result in some cases. The analysis presented in this paper
may then help to identify such cases.

The atomistic calculations carried out in this study have been made using the
empirical Finnis—Sinclair type many-body potentials (Finnis & Sinclair 1984) to
describe atomic interactions. A limited study was also performed using a
Lennard—Jones truncated equilibrium pair-potential. However, the grain boundary
structures calculated using these two different descriptions of interatomic forces
have all been found to be very similar (see also Wolf et al. 1989). Thus the qualitative
results are not sensitive to the details of the description of atomic interactions and
we present here only the results for the many-body potentials (Ackland et al. 1987).

In the case of many-body potentials and/or the embedded atom method (Daw &
Baskes 1983, 1984), which are equivalent approaches (Johnson 1988), the energy of
an atom o« is written as:

U, = s VR~ f(p* (2.1)
s

where R* is the separation of the atoms o and £ and V is a pair potential which is
strongly repulsive for small separations of atoms. f is the many body or embedding
function which is taken as the square root in the Finnis—Sinclair scheme, and

p* = S O(RD), (2.2)
B

where @ is a short-range pair-potential which can be interpreted as a sum of squares
of hopping integrals within the tight-binding approach incorporating charge
conservation (Finnis & Sinclair 1984 ; Ackland et al. 1988). (The indicial notation
adopted throughout this paper is as follows: Greek indices denote atoms or phases.
Lower case Roman subscripts denote cartesian components of tensors. Summation
over repeated Roman indices is implied using Einstein’s convention while summation
over Greek indices is indicated explicitly.) The summations extend over all the atoms
f interacting with the atom « and the total energy of the system is then taken as the
sum of energies of individual atoms. Both V and @ are fitted empirically so as to
reproduce the equilibrium crystal structure, elastic moduli, cohesive energy and
vacancy formation energy of the given material. The many-body term in equation
(2.1) allows us to include local density variations into the energy calculations which
is important for studies of interfaces.

In the present work we have studied symmetrical tilt and twist boundaries with
the [001] rotation axis and the corresponding crystallographic parameters of these
boundaries are summarized in table 1. The natural interface coordinate system is
always chosen with the z, axis taken to be perpendicular to the grain boundary
(interface) and the z, and «, axes parallel to the boundary plane. In the case of tilt
boundaries the tilt axis corresponds to the x, axis, whereas for the (001) twist

+ 1A=10"1m = 10"! nm.
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1. The relaxed structures of the X' =5 [001]/(210) symmetrical tilt boundary calculated
using the many-body potential for gold. (a) B structure, (b) B’ structure. The atoms, projected in
the [001] direction, are depicted as shaded circles, and two different shades represent atoms from
two different (002) planes in the [001] period.

Table 1. Crystallographic characteristics of grain boundaries studied

2 misorientation boundary plane

tilt boundaries

5 37.87° (210)
5 53.13° (310)
13 22.62° (320)
13 67.38° (510)
73 48.89° (830)
twist boundaries
5 36.87° (001)
13 22.62° (001)
25 16.26° (001)

boundaries x, (and also x,), is taken parallel to one of the csL vectors. The structures
of all the boundaries studied are practically the same as those found in the previous
works (Wang et al. 1984 ; Schwartz et al. 1985; Wang & Vitek 1986 ; Schwartz et al.
1988) and are not, therefore, presented here in detail. The analysis of the elastic
moduli in the grain boundary region is presented in detail for the 2 =5 (210)
symmetrical tilt and 2 = 5 twist boundaries. For the other boundaries studied only
the main features of the elastic moduli are described. Most results presented here
were obtained using the potentials for gold, but for the 2 = 5 (210) boundary results
obtained using the potentials for copper are also shown.

It should be noted that, as in former studies, more than one structure
corresponding to local minima in total energy has been found for crystallographically
equivalent boundaries (arrived at from different initial configurations). This
structural multiplicity is well known (Wang et al. 1984). As an illustration two
different structures of the 2 =5 (210) symmetrical tilt boundary, B and B’, are
presented in figure 1a, b respectively, and two different structures of the 2 = 5 (001)
twist boundary, csL and type I, in figure 2a, b respectively. These structures were
calculated using potentials for gold. The planar repeat cell of the X' =5 (210) tilt
boundary is delineated by the vectors [001] and [120] and the planar repeat cell of
the X' = 5 twist boundary by the vectors 1[130] and [310]. In the following we shall
call the unit cell of the boundary the parallelepiped based on the planar repeat cell
extending away from the boundary into both the lower and upper grains.

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2. The relaxed structures of the 2’ = 5 (001) twist boundaries calculated using the many-
body potential for gold. (a) csL structures, (b) type I structure. The atoms projected in the [001]
direction, are depicted as shaded circles and four different shades represent atoms from four
different (002) planes, two from the lower and two from the upper grain.

The boundary structures shown in figures 1 and 2 were calculated using potentials
for gold but very similar structures, indistinguishable on the scale of the figures, were
obtained using the potentials for copper. In the case of gold the structure B of the
2 =5 (210) tilt boundary is a lower energy structure ; the energy of the structure B’
is 15% higher. However, in the case of copper the situation is reversed. The energy
of the structure B’ is 8 % lower than the energy of the structure B. Furthermore,
when introducing a small perturbation the structure B’ in gold readily transforms
into B and in copper B transforms into B’. This suggests that structure B” in gold and
B in copper are unstable which is corroborated by the analysis of the elastic moduli
presented in §5.

The structures of the 2’ = 5 twist boundary shown here are only two possibilities
of a number of other structures found in previous studies (Bristowe & Crocker 1978;
Oh & Vitek 1986). The csL structure (figure 2a) possesses the symmetry
corresponding to the space group p42,"2" (Pond & Bollmann 1979). The primes on the
two-fold axes indicate that the symmetry elements relate sites in different crystals.
The four fold axis is parallel to [001], and the 2] and 2 axes lie in the interface
halfway between the nearest (002) planes of both crystals and relate atoms in the two
grains (Schwartz et al. 1985). The space group of the Type I structure (figure 2b) is
p22:2’, and thus it has a lower symmetry. Nevertheless, the Type I structure is a
lower energy structure as noted in a number of previous calculations (Bristowe &
Crocker 1978; Schwartz ef al. 1985, 1988; Oh & Vitek 1986). However, the energy
difference between these two structures is in the case of gold only 4 %.

3. Elastic moduli of heterogeneous continua

In this section we briefly discuss various continuum mechanics concepts that apply
both to the interpretation of the elastic constants of the discrete, atomically
heterogeneous systems that are introduced in §4 and to the corresponding continuum
model which is introduced in §5. Conditions of positive definiteness and strong
ellipticity of elastic moduli are defined and their implications are discussed. Notions
of averages and effective properties (i.e. overall or macroscopic properties) for
heterogeneous continua are also introduced. Finally, both upper and lower bounds
on the elastic moduli are given with special attention paid to restrictions imposed by
the elasticities.

Phil. Trans. R. Soc. Lond. A (1992)
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(@) Strain measure and definition of elastic moduli

The elastic constants of a continuum or a system of particles can be rigorously
defined through considerations of the change in energy with respect to straining of
these systems. The precise values of these elastic constants, e.g. moduli, depend upon
the strain measure adopted and, therefore, we begin by discussing kinematics of
deformation and introduce a particular strain measure. It is well known that there
are an infinity of strain measures that characterize the deformation or straining of
material line segments (Hill, 1968, 1978; Mehrabadi & Nemat-Nasser 1987),
although in practice only a few are commonly used. Here we choose the lagrangian
strain (sometimes referred to as the Green strain). For this definition of strain, the
effective elastic moduli of discrete atomic structures have all the symmetry
properties normally associated with rotational invariance, as shown by Martin
(1975b).

Let the vectors X and x denote material points in an undeformed and deformed
configuration, respectively, where for continuum deformation one can regard x as a
continuous function of X, x (X). In terms of cartesian components the deformation

gradient is then defined as
Fy; = 0x,/0X; (3.1)

and the components of the lagrangian strain as
€y = 5B By — 0), (3:2)

where 0;; is the Kronecker delta. In terms of the displacement vector w,, where
x; = X;+u;, the components of ¢; can also be expressed as
_ 1(6?@ n Ou; +auk 6u,c).

“ = 2\ax, Tox, " ax, ox,

(3.3)

If the displacement gradients are small so that the quadratic terms in (3.3) are
negligible, ¢;; is just the symmetric part of the displacement gradient which is the
usual small strain definition adopted in the linear theory of elasticity. In uniaxial
deformation, for example, with z, = AX,,€;; = (A2 —1). For an affine transformation
u; = ug +4;2; the displacement gradients are Ou,/0X; = A4;;, where u? and A, are
constant tensors. Analyses of the continuum model discussed in §§3b and 3d are
based on small-strain elasticity, O(e;;) < 1.

For an arbitrary uniform strain, ¢;;, the change in the strain energy, U, of a body
of volume £ can be formally expressed as a Taylor series

AU = Q[ 6 +3C0 1 €55 €5+ O(€%)], (3.4)
1 /00
where oy = 5(5:“)%:0 (3.5a)
is the tensor of the first-order elastic constants or internal stresses and
1( U
Cy=—
ikl Q (ae” aekl>€z -0 (35b)

is the tensor of the second-order elastic constants or elastic moduli of the medium.
The exact values of these constants depend on the strain measure used and, as noted
above, we adopt here the lagrangian strain measure.

Phil. Trans. R. Soc. Lond. A (1992)
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(b) Properties of elastic moduli

The fourth-order tensor of elastic moduli C is said to be positive definite if for any
non-zero second-order, symmetric tensor &

Ciik1 €160 > 0, €5 #0. (3.6)

With the usual symmetries, i.e. Cy;,; = Cjy; = Cyyy, C can be represented in the usual
way by a 6 x 6 symmetric matrix. Then, positive definiteness requires that all six
eigenvalues of this matrix be positive (or non-negative for positive semi-definite),
and this condition can be readily checked for each phase. If (3.6) is satisfied then the
strain energy is always positive at every strained point in a deformed body. It may
be of interest to note that in the isotropic case, positive definiteness of C requires that
the shear modulus G > 0 and —1 < v <}, where v is the Poisson’s ratio, in which case
the bulk modulus K > 0 and the Young’s modulus £ > 0. If C is positive semi-
definite, i.e. the symbol > in (3.6) is replaced by >, then G >0 and —1 <v <1

The differential equations of equilibrium of a linear elastic continuum, expressed
in terms of the displacements (the Navier equations) are strongly elliptic if for any two
non-zero vectors &, and 7,

Cimi&i&enim >0, §#0 and 75, #0. (3.7)

If (3.7) is satisfied then waves travel with real, positive velocities through the elastic
solid and, at least in the case when the average strain is zero, the total strain energy
of any deformed body is non-negative (see Knops & Payne 1971). If the average
strain &; (see equation (3.8) below) is non-zero then the total strain energy is at least
greater than or equal to ', €;€,,, where for some €; the latter may be negative if
the moduli are not positive definite. When the Navier equations are no longer elliptic,
displacement-gradient discontinuities, for example in the form of shear bands,
become admissible.

Unlike the condition for positive definiteness, the weaker condition of strong
ellipticity is not easily checked. To see this we note that (3.7) implies that the 3 x 3
matrix €, &£, must be positive definite for any §; (for which there are an infinity
of cases to check). In the isotropic case, strong ellipticity requires that the shear
modulus ¢ > 0and —o0 <v <jorl <v <+ 00,in which case the bulk and Young’s
moduli could be positive or negative. If C is semi-strongly elliptic, i.e. the symbol >
in (3.7) is replaced by >, then G > 0 and v lies in the same range.

The notion of positive definite and strongly elliptic moduli will be used to interpret
the discrete (atomistically) defined moduli. It is found that for certain atoms the
moduli are not positive definite and for some not even strongly elliptic. Certain other
important consequences of positive definiteness (3.6) and strong ellipticity (3.7)
relate to the determination of bounds on the effective moduli. First, if the moduli of
each phase of a heterogeneous medium are positive definite, i.e. (3.6) is satisfied for
each phase, and displacements are continuous across interfaces (i.e. perfect bonding),
then the actual internal fields for any proper boundary-value problem (BvVP) are
unique and minimize both potential energy and complementary energy. (For a
proper BVP, u or T or some linear combination of the two are prescribed on each point
of the external boundary S,, where u is the displacement vector, T is the traction
vector.) If the moduli of each phase are positive semi-definite then the solution may
not be unique for every proper BVP but a minimum in potential energy exists.
Second, if the strongly elliptic condition (3.7) is satisfied for a homogeneous medium,
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564 1. Alber and others

then the actual internal fields for prescribed displacements on the boundary are also
unique and minimize the potential energy (see, for example, Gurtin 1963). If the
moduli are semi-strongly elliptic then for every displacement BVP the solution may
not be unique but a minimum exists. (The reader is referred to Knops & Payne (1971)
for an expanded discussion of uniqueness.) The existence of these minima make it
possible to determine bounds on the effective moduli. Without positive definiteness,
a complementary energy principle is generally not valid.

(¢) Effective moduli of a heterogeneous continuum

Let us consider a heterogeneous continuum composed of homogeneous phases with
volumes Q% and elastic moduli (;;,; here o denotes different phases. When such a
medium is loaded on the external boundary by either a uniform traction or a
displacement corresponding to a uniform strain then, in general, the stresses and
strains in the interior will be non-uniform. A fundamental problem of interest which
has been widely studied in the continuum mechanics is the determination of overall
or effective response of the heterogeneous medium (see, for example, Hashin 1983;
Willis 1981, 1983; Hill 1985; Walpole 1983; Milton & Kohn 1988). For the problem
of external loading by either a uniform traction or strain field, these effective
properties, i.e. effective elastic moduli, relate average stresses and average strains as
detailed below.

Formally, &;; and €,; are defined to be the volume averages of local stresses o;; and
strains ¢;; respectively, in the heterogeneous medium :

7= fo-i]. a0, =4 f re) (3.8)

If the local stresses are an equilibrium field which, in the absence of body forces, are
divergence free (o ; = 0), and the strains are small (infinitesimal) and, therefore,
equal to the symmetric part of the displacement gradient (equation (3.3)), then these
averages are connected to uniform boundary conditions in the following way. Let S,
denote the boundary of € and let n be the unit outward normal to S,. First, if the
uniform traction vector T; = o{;n; is applied to S, where of; is constant, then
application of the divergence theorem to (3.8) gives &, = oy, Second, if the
displacement field u; = ¢; «;, corresponding to the uniform and constant strain ¢} is

applied on S, then €; = ¢f;. Furthermore, for either of these fields, using (3.8),

1
Tyty =g faij €; d82. (3.9)
Now, the overall effective moduli, Cf,,, for the heterogeneous medium are defined

by the relation _ . -
Tij = Ofiki €. (3.10)

The effective moduli are designated by an asterisk rather than an overbar to
emphasize that they are not simply volume averages of the moduli of individual
phases. Even in the framework of linear elasticity, if we imagine a well-defined
heterogeneous medium in terms of geometry and phase properties, the exact
calculation of Cf;, is a formidable if not impossible task since partial differential
equations must be solved for a heterogeneous medium that possesses a rather
irregular phase geometry. Instead, the approach most often taken is to approximate
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the effective continuum properties in terms of bounds on the moduli which are
rigorous bounds only if all of the (%, satisfy certain restrictions that are classified
in the previous section. On the other hand, the exact values of C}f,; can be calculated
for the systems composed of discrete particles, as described in §4.

(d) Bounds on effective moduli

Consider a heterogeneous continuum (which is piecewise continuous) and let C*
denote the moduli for phase «. When certain restrictions on the phase moduli C* are
satisfied, then rigorous bounds on the effective moduli C* can be obtained
corresponding to prescribed uniform straining on the boundary of the heterogeneous
medium. For the atomically heterogeneous systems under investigation, due to the
general anisotropy and possible loss of positive definiteness for the moduli of
individual phases, particularly those at the interface, we first focus on the application
and generalization of the simplest of the classical bounds. (Even though the grain
boundaries under consideration contain internal stresses, so long as these are
divergence free, as are residual stresses in a continuum, they will not change the
structure of the classical bounds.) The simplest case is when the C%®s are positive
definite as defined in (3.6) for each phase. In this case, the principle of minimum
potential energy leads to the Voigt upper bound which is associated with uniform
strain throughout the heterogeneous medium equal to the prescribed or average
strain (see, for example, Willis 1981)

CV=$EQ°‘C“EC‘, (3.11)

i.e. Voigt bound is simply the volume average, C, of the moduli of individual phases,
the arithmetic mean. In the case of the Voigt bound, as well as the other bounds
given below, only volume fraction, Q,/2, of individual phases and not, for example,
absolute or relative positions of phases enter the expressions. These volume fractions
in the present examples are directly determined from the volume of a Voronoi
polyhedron associated with a particular atom.

Also, in the case of positive definite moduli, the principle of minimum
complementary energy leads to the Reuss lower bound which is associated with
uniform stressing throughout the heterogeneous medium equal to the average stress

-1
Cy = [le ¥ Q“(C“)‘l] , (3.12)

i.e. the Reuss bound is simply the inverse of the volume average of inverses, the
harmonic mean. The fact that this lower bound does not permit semi-definiteness or
some cases of indefiniteness of the phase moduli, i.e. one or more eigenvalues of the
moduli are zero, is readily seen since (3.12) involves inverses of these moduli. Finally,
it is important to note that the expressions in (3.11) and (3.12) are bounds in the
sense that the associated quadratic forms are bounded, i.e. for any &

ECRE<EC*e < eCyE, (3.13)

where the fourth-order product €Cg = Cj;, €;; €;,;. Therefore, from (3.13) we can most
readily obtain explicit bounds on the diagonal components of C*.

Next, we consider the possibility when the moduli of one or more of the individual
phases are not positive definite. In this case we assume that all phases are at least

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

e

A
\

\\ \\
2

/

\
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
g\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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strongly elliptic as defined in (3.7) (or semi-strongly elliptic, but here the distinction
is not significant). In this case, for displacement Bves for which the principle of
minimum potential energy still holds, the Voigt upper bound (3.11) is still valid.
Gurtin (1963) has established this principle in the case of homogeneous solids;
Professor J. R. Willis of Bath University, U.K. has established this principle for
heterogeneous solids when a null-lagrangian (or variationally trivial lagrangian) 4,;,,
can be found such that C;, + 4, is positive definite for each phase. On the other
hand, the Reuss lower bound is not valid (i.e. the principle of minimum
complementary energy no longer exists and inverses in (3.12) may not exist). This
poses a difficult problem for which there may be solutions but, nevertheless, the
moduli of individual phases may be so poorly conditioned that it is impossible to
construct rigorous bounds.

We will now consider an extension of the translation method that has been
developed recently by Francfort & Murat (1986) and Milton (1990) to construct a
lower bound on C* when one or more of the phases is not positive definite. The
extension we have made permits the phase moduli to be strongly elliptic rather than
positive definite as they assume. Since the former also leads to the principle of
minimum potential energy for displacement BvPs, the extension is straightforward.
A derivation of the lower bound based upon the translation method is given in
Appendix A. Let C° be a constant fourth-order tensor that translates the local
moduli in a heterogeneous medium such that C*— C? is a positive definite (or positive
semi-definite) for each phase, and, most importantly in the present application, that
the quadratic form ¢C' is quasi-convex with respect to all symmetric second-order
tensors ¢. With these conditions on the C*s and C?, from the principles of minimum
complementary energy and minimum potential energy for the translated material it
can be shown that (see Milton (1990) in the case where all phases are positive definite
and Appendix A when only strong ellipticity is required)

-1
g{[ézm(c“—c")-l] +C°}E< eC*e. (3.14)

This expression leads to a lower bound, Cy, on the effective moduli C* based upon
a translation of the effective elastic constants:

-1

C,= [é > QHC*— CO)—l] +C°. (3.15)

If the individual phases are not translated, i.e. C° = 0, then C; = Cy. Hence, when
all phases are at least strongly elliptic then

gC E< eC*e < eCy & (3.16)

Finally, we emphasize that if the associated restrictions (see §3b and Appendix A)
are met, then (3.11), (3.12) and (3.15) are rigorous bounds on the effective moduli C*
for a heterogeneous continuum. As we shall see, it turns out that certain phases near
the grain boundary (whose properties are determined from the atomistic simulation)
violate these restrictions so that Cy, Cy and C; are not rigorous bounds. For
example, if some C* is not strongly elliptic then certainly Cy is not a rigorous upper
bound and, in general, a quasi-convex C° cannot be found, so that C; is not a
rigorous lower bound. Nevertheless, we will regard these as estimates and see that in
most cases they do behave as bounds.
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Grain boundaries as heterogeneous systems 567

4. Atomic level and effective elastic moduli for periodic discrete structures

To evaluate the elastic moduli for a discrete medium in which the atomic
interactions are known we shall consider a three-dimensionally periodic structure
with the repeat cell containing N non-equivalent atoms, i.e. those which are not
related by any symmetry operation of the structure. The volume of this cell is equal
to 2. We assume further that the total energy of the system, U, can be written as

U=3xU, (4.1)

where the summation extends over all the atoms. U, is the energy associated with the
atom o and it is a function of the vectors, R*, separating atom « and other atoms
p. It was recognized long ago (see, for example, Born & Huang 1954) that when a
macroscopically uniform strain is applied to this structure the displacements of
different non-equivalent atoms are generally different, i.e. an internal relaxation
oceurs. This is analogous to the situation that arises in the continuum mechanics of
heterogeneous media subject to uniform external loading, discussed in the preceding
section. In both cases such internal relaxations have to be taken into account when
evaluating the effective elastic moduli defined by equation (3.10).

However, unlike the situation for a continuum, exact values of effective elastic
moduli may be calculated for the system of discrete particles for which the energy of
the system, U, is a known function of the positions of the particles. This problem was
solved using the method of long waves by Born & Huang (1954) and Maradudin
et al. (1971), while Martin (19755) treated this problem for general many-body atomic
interactions employing the method of uniform macroscopic deformations. One very
important aspect of the results presented in this paper is that the complete fourth-
order elastic modulus tensor is calculated for both the local and the effective
properties. Below, the principal results of Martin (1975b) are summarized.

When applying a macroscopically uniform strain €; the displacements of atoms in
the repeat cell can be divided into the ‘homogeneous’ ones which are linearly related
to €; and the ‘inhomogeneous’ displacements resulting from the internal relaxation.
If no internal relaxation takes place the change in total energy is given by (3.4) with
all quantities in square brackets replaced by their averages. The average of the first-
order elastic constants, i.e. the internal stresses, are then

1o 1t Y _oU
—_ . a paf
Y Q0e; Q Zj %E‘JR“/”R
1 N
=5 El oy, (4.2)
and the average of the moduli
~ 1 U I 0*U,
o —_ — T P af
Ciger = Q e, 66“ Q4o %,: OR“/’OR“/’R’ B
1
= 551 Q*Clips (4.3)

where the sum on # includes all interacting neighbours of atom « (including those
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568 1. Alber and others

from other periodic cells) and the derivatives are evaluated at zero strain and * is
the volume associated with the atom «, which can be identified with the volume of
the corresponding Voronoi polyhedron (2 = XY Q*). This is the case when all
the atoms in the repeat cell are equivalent as, for example, in centrosymmetric
structures. The algebraic equalities (4.2) and (4.3) through the summations over «
then formally define the atomic level stresses of; and atomic level moduli (%,
respectively. The derivatives in (4.2) and (4.3) are readily evaluated from (4.1) with
given particular forms for V and @ in (2.1) and corresponding formulae are given in
Appendix B.

When the repeat cell of the particle system contains non-equivalent atoms
relaxation occurs and the corresponding inhomogeneous atomic displacements are
determined by the auxiliary condition of zero forces on each atom of the strained
medium. It was shown by Martin (19755b) that internal stresses are not affected by
the relaxation and are still given by equation (4.2). However, the relaxation alters
the elastic moduli. The change in total energy is now given by an expression
analogous to (3.4) with o; and ¢;; replaced by their averages &;; and &, while Uy, is
replaced by the effective elastic moduli

Ok = Oyt Oy (4.4)

where O, defined in (4.3), is the volume average of the ('}, and the second term
is the relaxation part of the moduli. This part can be evaluated analytically as
follows (Martin 1975b):

~ 1 N
Oijlcl = e) % XDy, Q%annm’ (4.5)
a=2 g
2
where Ds, = o 4.6a)

" Qe 0RS

and g%, is the inverse of the matrix

U
o = 6b
ILINI aR‘;laRgl’ (46 )
so that g B = 8,0, (4.6¢)
14

where the origin of the repeat cell is identified with the atom number 1. Detailed
expressions for 0%, (%, D, and % when the energy per atom is given by equation
(2.1), are presented in Appendix B.

Just as the homogeneous elastic moduli for each atom a, can be formally defined
from equation (4.3), the relaxation part of the moduli can also be associated with

individual atoms since according to equation (4.5)

~ 1 ~
Cijr = 0 2 Q" Oy, (4.7a)
a=2
e 1 @ g0 B
where i = o 2D Gt Dl (4.70)
B
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Grain boundaries as heterogeneous systems 569

It is seen from equations (3.4) and (4.1) to (4.7) that the change in energy, per unit
volume, associated with an infinitesimal uniform strain €; can be formally expressed
via the atomic level stresses and moduli as

1

N
1) 2 Qo6 +3505% 66, + O(E)]. (4.8)

vy

AU =

a=1

In the next section, based upon the formulae given in this section, the moduli for
individual atoms in various periodic structures containing grain boundaries are
calculated. Then the exact effective moduli for the overall structures are calculated
and compared with bounds on the effective moduli for an associated heterogeneous
continuum.

5. Grain boundaries as heterogeneous continua on the atomic scale

The definition of atomic level stresses and elastic moduli introduced above
naturally leads to a model of a heterogeneous continuum in which individual phases
are identified with individual atoms. Each phase is geometrically constructed as the
Voronoi polyhedron associated with an individual atom. As a schematic illustration,
the construction of Voronoi polyhedra is depicted in figure 3 for the unrelaxed 2 =
5 (210) tilt boundary in a simple cubic lattice. In this case the Voronoi polyhedra in
the ideal crystal (Wigner—Seitz cells) are cubes and their projections onto the (001)
plane are squares while for the rcc lattice the Voronoi polyhedra are rhombic
dodecahedra (Kittel 1986) and the projection would be complex. The moduli of each
phase are identified with the corresponding atomic level moduli C%,, determined by
equation (4.3). Such a construction is, of course, meaningful only if it leads to a model
of a heterogeneous continuum whose overall properties closely approximate the
properties of the actual discrete system. Typically, when this agreement between the
discrete and continuum effective properties is found, the structure possesses a
minimum energy among all known structures and is termed stable. More specifically,
as seen below, this agreement is in the sense that the exact effective moduli lie
between the upper and lower bounds (estimates) for the continuum model. In cases
where structures of a particular boundary have exact effective moduli that lie below
the lower bound (estimate), local stability of these structures seems to be common.
Nevertheless, these structures are usually higher energy structures and we regard
them, therefore, as ‘metastable’ in the sense that they may be stable for small
perturbations, but are unstable for large perturbations. On the other hand, when the
exact effective moduli lie above the upper bound the structure is typically not even
locally stable, i.e. it is unstable. The B’ structure in gold and the B structure in
copper are examples of unstable structures.

Since both the discrete and the piecewise continuous media are heterogeneous,
each will undergo a non-uniform internal response to a uniform external loading. The
corresponding effective moduli of the discrete structure can be computed exactly (§4
and Appendix B) while generally only upper and lower bounds on the effective
moduli can be found for the continuum model (§3d). Comparison of the moduli
calculated exactly for the discrete structure and the continuum bounds then reveals
how closely the continuum analogue approximates the atomic model. This
comparison is the main topic of this section and the principal result of this paper.
Conversely, the continuum ideas introduced in §3 also aid in the interpretation of the

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

(3

A

/
/

Vi

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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Figure 3. Schematic picture of Voronoi polyhedra associated with individual atoms in the 2 =5
(210) tilt boundary in a simple cubic lattice.
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Figure 4. The normalized diagonal elements of the tensor of the atomic level moduli, ¢z, = C% /C? |

for the 2 = 5 [001]/(210) symmetrical tilt boundary in gold. (@) B structure, (b) B’ structure.

atomistic results, for example in cases where the moduli for an individual atom may
not be positive definite or, in some cases, may not even be strongly elliptic. In the
next section we first present the atomic level moduli calculated for the boundaries
studied and discuss their characteristic features which for certain atoms in the
interface may be rather unusual.

(@) Atomic level moduli at grain boundaries

The diagonal elements of the tensor of the atomic level moduli, (%, are displayed
in figures 4 and 5 for the 2 = 5 (210) symmetrical tilt boundaries in gold and copper,
respectively, and in figure 6 for the X' = 5 [001] twist boundary in gold. The usual
6 x 6 matrix representation of the tensor of elastic constants is adopted and
normalized values ¢%, =C% /C% (no summation over =), where C9, is the
corresponding modulus in the ideal lattice, are plotted; C,,, C,, and C,; are normal
moduli while Cy,, C;; and Cg, are shear moduli. The C%, and 9, are defined in the
natural interface coordinate system, specified in §2. For the boundaries studied here
the elastic constants far away from the boundary are always the same for the lower
and upper grain and possess the symmetry of the ideal lattice. The corresponding
components of the moduli of the ideal lattice in the interface coordinate system are
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Figure 5. The normalized diagonal elements of the tensor of the atomic level moduli, ¢%, = C%,/C?
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for the X' = 5 [001]/(210) symmetrical tilt boundary in copper. (a) B structure, (b) B’ structure.
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Figure 6. The normalized diagonal elements of the tensor of the atomic level moduli, ¢z, = C%,/C9 |
for the 2 = 5 [001] twist boundary in gold. (a) csL structure, (b) type I structure.

listed in table 2 for each boundary considered. It is important to keep in mind that
although the tensor of moduli for the ideal Fcc lattice has only three distinct
components, in the grain boundary region the moduli associated with individual
atoms exhibit the general anisotropy and, therefore, the tensor of moduli has twenty-
one distinct components. For brevity, only the six diagonal components are
presented in this paper.

In figures 4-6 the points denote values of the moduli evaluated for individual
atoms, where certain points correspond to more than one (equivalent) atom. The
distances of particular atoms from the grain boundary are denoted on the horizontal
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Table 2. The diagonal components of the moduli (MPa) of the ideal lattice in the interface
coordinate system for all the boundaries studied

grain
boundary Cy Coy Cys Cu Css Ces

[001] tilt boundaries in gold

25 (210) B 2.036 1.860 2.036 0.420 0.244 0.420
25 (210) B 2.036 1.860 2.036 0.420 0.244 0.420
25 (310) 1.959 1.860 1.959 0.420 0.321 0.420
213 (320) 2.094 1.860 2.094 0.420 0.186 0.420
213 (510) 1.901 1.860 1.901 0.420 0.379 0.420
273 (830) 1.979 1.860 1.979 0.420 0.301 0.420
[001] tilt boundaries in copper

25 (210) B 2.016 1.684 2.016 0.754 0.422 0.754
25 (210) B 2.016 1.684 2.016 0.754 0.422 0.754
[001] twist boundaries in gold

25 osL 1.959 1.959 1.860 0.420 0.420 0.321
25 type 1 1.959 1.959 1.860 0.420 0.420 0.321
213 csL 1.901 1.901 1.860 0.420 0.420 0.379

axes of the plots; they are taken as positive for the upper and negative for the lower
grain. The choice of the origin for measuring the distance from the boundary is, of
course, somewhat arbitrary and in the present study it has been identified with the
position of the plane separating the two grains in the geometrically constructed,
unrelaxed, structure.

It is seen that the atomic level moduli have significantly different values in the
boundary region than in the ideal crystal but converge to the ideal lattice values as
the separation from the boundary increases. Not only do the values of individual
components vary, but so do the principal axes of anisotropy (as characterized in a
six-dimensional space) which will be reported in a subsequent paper. In most cases,
marked by squares, the elastic moduli are positive definite. However, for a limited
number of atoms in the boundary region the moduli are not positive definite and in
some cases even strong ellipticity cannot be guaranteed. For the atoms for which the
strong ellipticity cannot be established the values of the moduli are marked by
triangles, while for those with strongly elliptic but not positive definite moduli they
are marked by crosses. For the 2 = 5 (210) tilt and X = 5 [001] twist boundaries in
gold the atoms for which the moduli have these unusual properties are similarly
marked in figures 1 and 2. Again we emphasize that, for brevity, only the diagonal
components of the moduli are plotted. In the boundary region there is generally no
symmetry and variations in the off-diagonal components are also significant.

For the (210) B and B’ in gold structures the shear moduli C,, and C,,, which
correspond to shearing on a plane parallel to the boundary (i.e. both have an x,
component), are negative for certain atoms. Recall that moduli are non-positive
definite if at least one eigenvalue of the matrix of elastic constants is negative (see
§3b). A negative diagonal component of the tensor of moduli firmly indicates that the
moduli are not strongly elliptic. In the case of the B structure in gold two (one non-
equivalent) atoms per unit cell have non-positive definite moduli and these also have
negative shear moduli (figure 4a). In the B” structure in gold fourteen (seven non-
equivalent) atoms have non-positive definite moduli of which six (three non-
equivalent) have negative shear moduli (figure 45). In the case of copper there are no
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Table 3. Boundary energies and characteristics of the atomic level and effective moduli for all the
boundaries studied

number of
number of atoms with
atoms with sums of all negative hy
non-positive negative diagonal moduli (in units of
grain definite eigenvalues (non-strongly  the lattice
boundary  energy/(mJ m™2) moduli of moduli elliptic) parameter)
[001] tilt boundaries in gold
25 (210) B 674 2 —0.29200 2 1.12
25 (210) B 773 14 —2.96316 6 2.24
X5 (310) 695 3 —0.39471 1 0.00
213 (320) 634 8 —1.00400 4 0.00
213 (510) 734 4 —1.30489 1 0.35
273 (830) 723 18 —2.11313 6 0.60
[001] tilt boundaries in copper
25 (210) B 1124 6 —0.87570 2 2.24
25 (210) B 1041 0 0.00000 0 1.57
[001] twist boundaries in gold
25 osL 726 10 —2.04948 2 4.00
25 type 1 697 4 —1.28410 0 3.00
213 osL 583 18 —4.87230 0 1.11
225 csL — 40 —5.74145 0 0.00

atoms with non-positive definite moduli in the B’ structure (figure 56) while in the
B structure six (three non-equivalent) atoms have non-positive definite moduli of
which two (one non-equivalent) have negative shear moduli (figure 5a). It is
interesting to note that the B’ structure in gold and the B structure in copper are
higher energy states and they were found to be unstable in the sense that a small
perturbation of these structures leads to relaxation into lower energy structures B
and B’ in gold and copper respectively.

In the 2 = 5 csL twist boundary in gold ten (two non-equivalent) atoms per unit
cell have non-positive definite moduli and two of these also have negative shear
modulus Oy (figure 6a). On the other hand, for the lower energy Type I structure
there are no atoms having negative atomic level shear moduli although four (one
non-equivalent) atoms have non-positive definite moduli (figure 66).

We have considered a significant number of other cases including 2’ = 13 and 2 =
25 twist boundaries and 2 = 13 and 73 tilt boundaries. For brevity, the detailed
results for moduli at individual atoms will not be presented here. Nevertheless, for
some of these boundaries the effective bicrystal properties are discussed in the next
section. In general, the number of atoms that lose positive definiteness or strong
ellipticity are small relative to the total number of atoms that account for the
distinct grain boundary structure. The numbers of atoms with non-positive definite
moduli and negative diagonal components of the tensor of moduli are summarized for
all the boundaries studied in table 3.

(b) Effective moduli for bicrystals

In this study we deal with blocks of atoms contained within infinite bicrystals with
the periodic boundaries in the middle. As explained above, for each bicrystal a
heterogeneous continuum is constructed as an analogue where each phase occupies
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r 3 51 3 5 r 3 s 1 3 5

Figure 7. The effective moduli (points), the Voigt upper bound, C, (solid curve) and translation
lower bound, C, (dashed curve) against the sub-block size 4 for the X' = 5 [001]/(210) symmetrical
tilt boundary in gold. (@) B structure, stable; (b) B’ structure, unstable.

the region in space defined by the Voronoi polyhedron for a particular atom and is
assigned the elastic moduli for that atom. The exact effective moduli for the discrete
atomistic system can be computed for the relaxed structure as described in §4. Now
consider sub-blocks of the infinite bicrystal taken as small bicrystals in which the
number of atom layers above and below the grain boundary is rather small. The
height of these bicrystal sub-blocks is denoted 2A. Since according to (4.7)
contributions to the overall effective moduli can be associated with individual atoms,
we may evaluate the exact effective moduli of each sub-block for the discrete model
by summing C** over the atoms in this sub-block. The effective moduli of the
bicrystal are thus determined as functions of 4.

Bounds on the effective moduli of the sub-blocks for the continuum model can be
evaluated on the basis of the results in §3d. Summations in equations (3.11), (3.12)
and (3.15) are always taken over the atoms in a sub-block and the bounds are thus
also determined as functions of 4. However, we must keep in mind that these are only
rigorous bounds if each phase is at least strongly elliptic (and in the case of the
translation lower bound, C;, that the quadratic form associated with C° is quasi-
convex). Since most often at least one atom violates the strong ellipticity
requirement, we regard Cy, Cy or C; of §3d as estimates rather than bounds,
although it is found that so long as & > a (the lattice parameter) they tend to behave
as bounds. For C; the translation operator C°in (3.15) is taken to be a constant times
the identity tensor for simplicity. (Other choices such as a constant times the ideal
crystal moduli proved not to be more useful, probably because the anisotropy in the
boundary region is quite general and not similar to that of the ideal crystal.)

In figures 7-13 the effective moduli C* are plotted versus the sub-block size A.
Each component plotted is normalized by the corresponding component for the ideal
lattice, i.e. C,, = O3}, /C,. The exact effective properties for the discrete (atomistic)
system are denoted by points while the continuum estimates based on the Voigt upper
bound, Cy, are the smooth curves and translation lower bound, C, are the dashed

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

/,//’ \\
o \
( 2\

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\
/%

p

THE ROYAL A

a

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Grain boundaries as heterogeneous systems 575
a
2 2 KO X
C11 ¢ Cn C w“
' PEETEE A W I
0 0 0 o
2 , 2 0
C .
? Cof o Ca C55
T T~ 55 Ttteaa.,
el ITTTTITY T T _— ]
: LS — e 1)
LT k,——-——‘—*
0 0 0 gl
2 2 9 r 0
C33 C66 C33 C 6
e Frrrrerererer ey,
""""" ! ] Ve
+ A_'/L;:/ﬂ
O e
0 |
13 501 305 0y 5 0 —

Figure 8. The effective moduli (points), the Voigt upper bound, C (solid curve) and translation
lower bound, C, (dashed curve) against the sub-block size & for the ' = 5 [001]/(210) symmetrical
tilt boundary in copper. (a) B structure, unstable; (b) B’ structure, stable. In the latter case the
Reuss lower bound, Cj, is also drawn as a solid curve.

curves. In table 3 we give values of A = &, such that for » < A, the effective moduli
for the discrete model are non-positive definite while for & > &, they are positive
definite. Note that most often (and particularly for stable or metastable structures
as defined below) 4, is typically a small multiple of the lattice parameter. We begin
with results for the 2’ = 5 (210) symmetrical tilt boundary which are shown for gold
and copper in figures 7 and 8 respectively.

For the B structure in gold (figure 7a) the exact effective moduli for the discrete
structure always lie between the estimates as they should if the estimates are actual
upper and lower bounds. The reason that the bounds (from here on the continuum
estimates will be referred to as bounds) are not too close for certain shear components
of the moduli is associated with corresponding components of the local moduli losing
positive definiteness or strong ellipticity close to those directions. (In the case of loss
of positive definiteness we mean those directions of eigenvectors corresponding to the
negative eigenvalues in the six-dimensional hyperspace of the matrix of moduli while
for the loss of ellipticity we simply mean that direction corresponding to a negative
diagonal component of the moduli of any individual phase.) An extreme case for the
B structure is the component C% for which the lower bound is negative. For the
structures B’ in gold (figure 7b) most of the effective moduli lie in between the bounds
but C¥ lies well above the upper bound which is physically implausible. From the
continuum point of view the Voigt upper bound is based upon the assumption that
each phase undergoes the same strain, equal to the average strain. This uniform
strain mode of deformation is over constrained and, therefore, should lead to a stiffer
effective response for the heterogeneous medium than the actual one. Similarly, from
the point of view of the discrete structure the effective moduli, C*, are always
smaller than the average moduli, C, which represent the Voigt upper bound. The
reason is that they reflect the relaxation associated with application of the uniform
strain and this always decreases the strain energy (see also equation (4.8)) provided
the energy of the structure, considered as a function of coordinates of all the n atoms
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in the block, is a minimum. Therefore, we suggest that the above situation may only
arise if the structure is not stable. This means that the surface in the 3n-dimensional
space representing the dependence of the energy of the block on atomic positions
does not possess a true local minimum for this configuration even though the forces
acting on the atoms are all small, i.e. below the criterion used in the relaxation
calculation (see §2). Such an energy surface is generally very complex and it may
possess some plateaux and inflexions which may not be readily distinguishable from
true minima.

First we note from table 3 that the energy of the B’ structure is in gold 15 % higher
than that for the B structure and, as mentioned in §2, the former readily transforms
into the latter upon a small perturbation. Furthermore, as also seen in table 3, in the
B structure the moduli of only two atoms per unit cell are not positive definite and
these are also not strongly elliptic while for the B’ structure the moduli for fourteen
atoms per unit cell are not positive definite and for six of these they are also not
strongly elliptic. If the elastic moduli are not positive semi-definite, then upon
deformation it is possible that the strain energy is negative at a material point, i.e.
(3.6) may be violated locally. It means that local atom rearrangements arising from
external loading (e.g. external displacements) can cause certain atoms to move to a
locally lower energy configuration. This is entirely plausible even for stable
structures since these correspond to local minima of the global energy and, while
energy associated with some atoms decreases upon straining, it is compensated for
by the increase of the energy associated with other atoms. However, it is unlikely
that in stable structures such a decrease may occur for a large number of atoms.
Hence, a large number of atoms with non-positive definite moduli is a good
indication of possible instability of the structure. Indeed, at the plateau and/or
inflexion of the energy surface defined above, the moduli which relate to the second
derivatives of this surface, cannot be expected to be all positive definite. This is,
presumably, the situation arising in the case of the B’ structure in gold.

The atomic configurations of the B and B’ structures in copper very closely
resemble those of gold but the energy and moduli are quite different. As seen in table
3, for copper B’ is the lower energy structure and all atoms have positive definite
modult. In contrast, in the B structure the moduli are non-positive definite for six
atoms of which two possess non-strongly elliptic moduli. This is consistent with the
results for the effective moduli shown in figure 8a, b. For the B structure O lies well
above the upper bound and this suggests that this structure is not stable. Indeed, as
mentioned in §2, the B structure in copper readily transforms into the B’ upon a
small perturbation. Since for the B’ structure all atoms possess positive definite
moduli, the Reuss lower bound, Cy, given by equation (3.12), can also be computed
and it is shown as lower solid line in figure 85. All bounds, Cy,, C, and Cy are rigorous
in this case. The good agreement in this stable case between exact effective moduli
from the discrete model and the continuum bounds is strong evidence that the
continuum model of the boundary is justified. The fact that the exact modulus C,,
only lies slightly below the lower bound indicates, nevertheless, that this boundary
is stable and the continuum model is an approximate one. This latter observation is
reasonable since the non-local natures of the atomic interactions are certainly not
included in the local linear elasticity theory.

The two structures of the X =5 (210) symmetrical tilt boundary have been
carefully discussed so that the interpretation of other boundaries in terms of
continuum properties of both the atomic level and effective moduli can be made. In
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Figure 9 Figure 10

1 3 51 3 5 1 3 5 01 3 5

Figure 9. The effective moduli (points), the Voigt upper bound, Cy (solid curve) and translation
lower bound, C, (dashed curve) against the sub-block size & for the 213 (320) symmetrical tilt
boundary in gold, stable.

Figure 10. The effective moduli (points), the Voigt upper bound, C, (solid curve) and translation
lower bound, C, (dashed curve) against the sub-block size & for the 213 (510) symmetrical tilt
boundary in gold, stable.

particular, the comparison of the exact effective moduli for the discrete model with
the estimates from the continuum model can help to assess the stability of structures.
Examples of stable and unstable structures were given above and an illustration of
a metastable structure is given below for a 2 = 5 twist boundary.

Other symmetrical tilt boundaries in gold which have been studied are the 2 =5
(310) boundary, two 2 = 13 boundaries with different misorientations and the
2 =73 boundary. In the case of the 2 =5 (310) boundary, corresponding to the
C structure found in previous studies (Wang et al. 1984; Wang & Vitek 1986), the
relaxation parts of the elastic moduli, C*, are all negligible and thus the effective
moduli are equal to the atomic level moduli C* Hence, the exact effective moduli
coincide in this case with the upper bound and the structure is stable. This is so
although three atoms in the unit cell of this boundary possess non-positive definite
moduli, one of which possess non-strongly elliptic moduli.

Figure 9 summarizes results for the 2 = 13 (320) boundary and figure 10 for the
2 =13 (510) boundary. Following the structural unit model (Sutton & Vitek 1983)
the repeat cell of the former boundary is composed of one B unit and one unit of the
ideal crystal and the repeat cell of the latter boundary one C unit and two units of
the ideal crystal. In both cases the exact effective moduli for the discrete system tend
to lie between the bounds so that we characterize both structures as stable. Figure
11 gives similar results for the 2 = 73 (830) symmetrical tilt boundary the repeat cell
of which is composed of one B unit and two C units. For this structure the moduli
aiso lie between the bounds indicating that the structure is stable. These results are
not surprising since the 2 = 13 and 2" = 73 boundaries are composed of the units of
structures which are all stable and have well-behaved elastic moduli. The fact that
the effective elastic properties for the discrete and continuum models are in better
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Figure 11. The effective moduli (points), the Voigt upper bound, C, (solid curve) and translation
lower bound, C, (dashed curve) against the sub-block size % for the 273 (830) symmetrical tilt
boundary in gold, stable.
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Figure 12. The effective moduli (points), the Voigt upper bound, C, (solid curve) and translation
lower bound, C, (dashed curve) against the sub-block size 4 for the X5 twist boundary in gold. (a)
osL structure, metastable; (b) type I structure, stable.

agreement for these longer period boundaries is further justification of the continuum
analogue in general. In fact, when calculating the structures of short period
boundaries, such as 2 =5 (210), we are restricting the relaxations rather severely
owing to the imposed short periodicity and thus it is more likely to encounter
unstable or metastable structures. For example, additional relaxation, not allowed
in the present calculations, may be a reconstruction leading to the increase in the size
of the repeat cell. Indeed, it was shown in earlier pair-potential calculations that
quadrupling the unit cell of the 2 = 5 (210) symmetrical tilt boundary leads to a new,
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Figure 13. The effective moduli (points), the Voigt upper bound, C, (solid curve) and translation
lower bound, C, (dashed curve) against the sub-block size % for the X213 twist boundary in gold,
stable.

energetically more favourable, structure (Vitek et al. 1985). A similar situation arises
in the case of the 2’ = 5 twist boundary as noted below.

The dependence of the effective moduli on the sub-block size & for the X' = 5 twist
boundary in gold is shown in figure 12a,b for the osL and type I structures
respectively. For the type I structure all the exact effective moduli for the discrete
system lie between the bounds. Clearly, this is related to the fact that only four (two
non-equivalent) atoms have non-positive definite moduli and none have any
negative diagonal components of the tensor of moduli. This structure is clearly
stable. On the other hand, in the ¢sL structure ten (three non-equivalent) atoms have
non-positive definite moduli and two of them have negative shear modulus C,,. It is
seen in figure 12¢ that the exact effective modulus C,, (and by symmetry also C;)
lies well below the lower bound and it is negative up to the distance of about 3.5
lattice spacings from the boundary. This implies that for the osrL structure the
properties of the model of the boundary as a heterogeneous continuum do not
approximate well the properties of the actual discrete system. This is an exception
for the boundaries studied. However, the csL structure is not unstable; it is a
metastable higher energy structure which will transform to a lower energy one only
if a sufficiently large perturbation is applied. None the less, the metastability of the
osL structure suggests that it may not be present in the bicrystals in spite of the fact
that the observed structures show the csL symmetry (Budai et al. 1983). More"
complex but more stable structures, corresponding to reconstructions into larger unit
cells, may be present as suggested earlier by Oh & Vitek (1986).

Another twist boundary in gold which has been studied is the 2 = 13 boundary.
Figure 13 summarizes the results for this boundary and shows that the exact
effective moduli for the discrete system lie between the bounds so that the structure
is stable. This is so in spite of the fact that following the structural unit model
(Schwartz et al. 1985, 1988; Vitek 1988) the unit cell of this boundary is composed
of one unit cell of the X' = 5 boundary with the csL structure and one unit of the ideal
lattice. This emphasizes the specific peculiarity of the isolated csL structure of the
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2 =5 twist boundary which does not necessarily translate to the structures
containing units of this boundary.

6. Conclusions

From the examples of both tilt and twist boundaries in bicrystals of gold and
copper studied in this paper several important observations and conclusions emerge.
In fact, many of these may be applicable to interfaces in bimaterials as well. First of
all, the validity of a continuum model in which grain boundaries are regarded as
heterogeneous media, where different phases are identified with individual atoms, is
established. In this medium the elastic moduli of each phase, which occupies the
interior of a Voronoi polyhedron, are identified with the second-order elastic
constants associated with this atom. These atomic-level elastic constants vary
considerably in the interface and are highly anisotropic due to irregular atomic
structure. There are generally 21 distinct components of the modulus tensor C for
atoms in the interface. While the tensor of elastic moduli associated with an atom in
a perfect lattice is always positive definite, for atoms in the interface this may not
be the case.

For bicrystals with stable grain boundary structures the majority of distinct
atoms tend to have moduli which are positive definite or at least strongly elliptic. In
this case elasticity Bves for the associated continuum model are well posed, including
the one that determines the effective properties of a heterogeneous medium. Grain
boundaries with metastable and unstable structures tend to have a larger number of
atoms for which the moduli are not positive definite or possibly not even strongly
elliptic. Recall that positive definiteness is a requirement such that under all possible
strain states the local strain energy is positive, while the weaker condition of strong
ellipticity requires that waves propagate with real velocities.

For both the discrete atomistic structure and the heterogeneous continuum a
natural and important problem arises concerning the effective moduli for the
engemble or block of atoms. These effective moduli characterize the response of the
block to uniform external loading, for example a displacement corresponding to a
uniform strain, as discussed in §3¢. Whereas the effective moduli for the discrete
system can be calculated exactly, as summarized in §4, those for the heterogeneous
continuum cannot. Nevertheless, when the individual phases are all at least strongly
elliptic rigorous bounds on the effective moduli for the continuum model can be
obtained ; otherwise we can only obtain estimates.

When the effective moduli of the bicrystal and the bounds are determined as
functions of the distance from the boundary, as described in §5b, the exact effective
moduli approach those of the ideal lattice at distances of order of ten lattice spacings.
When all atoms or phases have positive definite moduli, as in the case of the B’
structure of the 2 =5 (210) tilt boundary in copper, the agreement between the
exact effective moduli for the discrete system and the bounds is very good even
though the continuum model assumes only local elastic behaviour. As seen in several
examples presented in §5, structures for which such an agreement is good are found
to be stable. When some components of the exact effective moduli lie below the lower
bound the corresponding structure is found to be metastable. Finally, when some
components lie above the upper bound the structure is unstable. Hence the
comparison between the atomistic and continuum predictions for the effective
moduli proves to be a pertinent measure of the stability of a given structure.
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Appendix A. Derivation of Francfort-Murat-Milton lower bound

Francfort & Murat (1986) introduced bounds on effective moduli for heterogeneous
linear elastic solids based on the translation method, which relates to concepts of
relative convexity discussed, for example, by Hill (1978, 1985). The following
derivation most closely follows the recent work of Milton (1990). The BvP considers
a heterogeneous elastic medium composed of NV phases, where each phase occupies a
region £,

0;;,=0, inQ, a=1N, (A la)

0y = (C*—=Cyp €y = MO 64, In 2, a=1,N, (A 1b)
with the displacement boundary conditions
up(x) = €%, on S=.8, (Ale)

and continuity of tractions and displacements is assumed across phase boundaries.
The tensor of elastic moduli, C*, in every phase « satisfies usual symmetry conditions

Ciir = Cuig = Clinas (A2)
as does the translation operator C° and also the moduli of the translated phases,
hence AC*. In the original derivation C* is assumed to be positive definite for each
phase.

Next we extend the translation method for constructing lower bounds to include

strongly elliptic phases. In this case the following three requirements must hold. (i)
C* must be semi-strongly elliptic, i.e.

Coi & 86m 20 (A3)
for all vectors & and . (i) The translation operator C® must be quasi-convex, i.e.

1 -

0 L) Ciini i€ AV 2 Cliy €€y, (A4
where & is defined by equation (3.8). (iii) AC%,,, defined in (A 1b), must be positive
definite,

ACY €6, > 0, (A5)
for all second-order tensors & Consequently, the inverse tensor (AC*)™! is also
positive definite, i.e.

(AC*)i 0 Ty > 0 (A 6)

for all second-order tensors .
By definition of effective constants for the heterogeneous material with phases

AC%,, we have
ACH, €€ = 2W,, (A7)

where W, is the strain-energy density corresponding to the actual solution for the
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translated material and the average of actual strain is defined as &; = 1/Q[ ¢, dV;
also [ACT1)%,, = [AC*],.

Next, from the condition of positive definiteness of (AC*)™! it follows that we can
use the minimum complementary energy theorem, which for displacement boundary
conditions has the form

N
—2W, = min {i > J (AC*) 73 G &kldV——Q—f n; Gy Uy dS} (A 8)
Q a=1 - Q S

among all self-equilibrated stress fields 6. For constant trial fields ¢ the previous
expression can be rewritten in the form

N[

- 2 (%) @it | oy o+ 20,8, < 2, (A 9)
a=1

To get an optimal lower bound on 2W, we take the derivative of the left-hand side
with respect to & to get

N .Q
[Z (Ea) (Aoa)i—j}cl] G = € (A 10)
a=1
- N Q -1
or Gy = [Z (—j) (AC"‘)‘I] - (A 11)
a=1 ikl

Substituting (A 10) and (A 11) into (A 9) we get a lower bound on the strain energy
of the translated material

N Q -1
[Z (5) (AO“)‘I] &y < 2W,. (A 12)
a=1 ikl

The condition of positive definiteness of AC* ensures the validity of the theorem
of minimum potential energy, which for displacement boundary conditions gives

(1Y
2W, = min (E > f AC, €ij€kldV) (A 13)
a=1

a

among all fields such that 1/Q fg é;dV = &; and u,(s) = €, x,. Thus from (A 12) and
(A 13) with (A 1b)

N V. 1 -1 1 N 1
- | (AC%)” €€y < min | — o & & - 0~ & .
[051(17)( ) Lmew G S TR [Q 31 fg Ciier €3y € AV O -L Ciie €4 €IcldV]
(A 14)

3

Hence, with (A 4) and (A 14) it follows that

a=1 ijkl Q a=1

N Va . -1 B ) 1 N o
[Z (7) (AC) } €4 € < Min [— z fﬂ C¥rt eijekldV]—C?W €€ (A 15)

By definition of effective elastic constants for actual (non-translated) hetero-
geneous medium

Ok €5C = 2W (A 16)
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and substitution into (A 14) yields

N V -1
(C)ijior €1 €t = {[Z (7“) (AO“)‘I] +Og.kl} €ij €t

a=1 ikl
1
< min [5 > f Csir eije,c,dV] = O €6 (ALT)
a=1J Q2

(3

Finally, to illustrate the importance of conditions (i)—(iii) we note the following. (a)
If the condition (iii) for positive definiteness of AC* fails, but (i) and (ii) are satisfied,
then the basic inequality fails and so does the lower bound. (b) If condition (ii) for
quasi-convexity of C° fails, while other conditions are valid, then there is lower
bound on AC* but we cannot extract an exact lower bound on C*. (¢) If the
condition (i) is not satisfied (for example C%,,, < 0 and phase a is not semi-strongly
elliptic). It can be proven that there does not exist minimum for potential energy for
such phase. The latter two cases arise in the examples considered in this paper and,
therefore, we regard Cy in such cases as an estimate rather than a bound.

Appendix B. Effective elastic moduli in discrete periodic structures

Let us consider a periodic structure the unit cell of which contains N non-
equivalent atoms and associate each of these atoms with a different sublattice;
indices denoting individual sublattices are p(a),a« = 1,...,N. We now apply to this
structure a macroscopically homogeneous strain & related to the deformation
gradient, F, according to equation (3.2). On the microscopic level this strain does not
induce a homogeneous displacement of all the atoms but different sublattices will be
displaced differently with respect to each other (Born & Huang 1954 ; Martin 19750).
Let R* be the vector connecting atoms a and S, belonging to sublattices p(x) and
p(pB), respectively, in the undeformed state, and r* is the vector connecting the same
atoms in the deformed state. This vector can be expressed as

r*# = FR 4 PP — §P@ (B 1)

where 87 is the internal displacement vector of the sublattice p relative to a reference
sublattice, for example p(1). It is convenient to transform the internal displacement
vectors to a rotationally invariant set of N— 1 independent vectors {? defined by the
relation:

(P = FTo7, (B 2)
where F7 is the transpose of the deformation gradient F. It has been shown by Martin
(1975b) that the formulas for stresses and elastic moduli take then simple forms when
expressed in terms of the square of the distance between atoms « and g, s = rr*,
By using equations (B 1) and (B 2) we obtain for the lagrangian strain defined by
equation (3.2)

§¥ = R*F 28+])Ra/?+2 Lrd Cp(a))Raﬂ+(§p(ﬁ) Cp("‘))(28+1)“1(€p(ﬂ)—§p(“)). (B 3)

Assuming that the atomic interactions are given by many-body potentials of the
type (2.1), then using equation (4.2) the atomic level stress associated with an atom
o is

o = [2 V(s —2f " (p z @ s“ﬁ)]lig‘/’ﬁg‘ﬂ, (B 4)
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where the derivatives of V and @ are taken with respect to s*. The atomic level
elastic moduli associated with an atom o, defined by equation (4.3), are then

4

i = 5| SV )~ ) 0" () B3P R Tt i
s

—F (P S P (57) Ry R X, @ () R%ﬂﬁ%ﬂ] . (B5)
14

Y

The relaxation part of the elastic moduli is given by equation (4.5) in terms of Dy,
and E%. Substituting (2.1) into equations (4.6a, b) gives:

D3, = 2(DVE,, —2DN3;,) (B 6a)
and B = T2V 6) =4 () O (PR 8y

+[V s —2f"(p ) P §79)]8,,0

£0, py 8&6, a'y}

—42f"(p,) X D' (s7) R} O, py 2 @’(8”"6)3}';s s, oy (B 6b)
Y « P
where DV, = Z [V (s7)=2f"(py) D" (s")| R RYY RY 8,

DNi}n — Zj // [ s @/(S/fv)]g/fy 3(17 o8 (Z 1% ( aB)Rar?Raa):l

y=1

and

Oay,ap = 0L P(2) = p(y)] —dlp(a) —p(B)1}-

The procedure described in this Appendix and in §4 allows us to evaluate exactly
the effective moduli for any three-dimensionally periodic structure. However, in the
atomistic calculations of grain boundaries only two-dimensional periodicity, in
the plane parallel to the boundary, is imposed while in the direction perpendicular
to the boundary the block is effectively infinite (see §2). Hence, when evaluating the
relaxation part of the effective moduli, Owlch the following prooedure was adopted.
For each relaxed structure a periodic array of grain boundaries was constructed such
that individual grain boundaries are separated to such an extent that no interaction
between them occurs. This construction is purely geometrical and no additional
relaxation of atomic positions has been allowed. By using the boundary periodicity
and periodicity of the array of boundaries, a three-dimensional repeat cell can easily
be defined. It contains two, well separated, boundaries. However, most of the atoms
in this cell are far away from the boundary, in the region of the ideal lattice. In
particular, we regarded any atom at the distance bigger than twice the largest repeat
vector in the boundary plane, as being in the ideal lattice. This is a reasonable
assumption since the strain field associated with grain boundaries decreases rapidly
and becomes negligible at this distance (Read & Shockley 1953 ; Hirth & Lothe 1982).
For such an atom o both Df;,, and E% have then been put equal to zero. This reduces
substantially the number of linear equations in the set (4.6 ¢) and makes the problem
more tractable.
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